Deep learning: sequence predictions

Benoit Favre

benoit.favre@univ-amu.fr>

Aix-Marseille Université, LIF/CNRS

last generated on January 15, 2018

1 / 16

What is sequence prediction

- Make a sequence of decisions dependent on an input
 - Decisions are interdependent
 - Sometimes input synchroneous (tagging), aligned (machine translation), or lously coupled (chatbot)

$$X = x_1 x_2 x_3 \dots x_n$$

$$Y = y_1 y_2 \dots y_m$$

$$Y = \text{neural_network}(X)$$
?

- Main deep learning benefits
 - Automatic differentiation
 - Various architectures
 - Representation learning (automate feature extraction)

Multilayer perceptron

• Predict y_i from x_i

$$y_i = softmax(tanh(W_2z_i + b_2))$$
 $softmax_k(x) = \frac{e^{x_k}}{\sum_j e^{x_j}}$
 $z_i = tanh(W_1x_i + b_1)$

- No dependency on neighboring predictions
 - $ightharpoonup x_i$ can include a range of features around i
 - ▶ Can include forward dependency $y_{i-1} \subset x_i$

Basic RNNs

- Back to the $Y = \text{neural_network}(X)$ notation
 - $x = x_1 \dots x_n$ is a sequence of observations
 - $y = y_1 \dots y_n$ is a sequence of labels we want to predict
 - $h = h_0 \dots h_n$ is a hidden state (or history for language models)
 - ightharpoonup t is discrete time (so we can write x_t for the t-th timestep
- We can define a RNN as

$$h_0 = 0 (1)$$

$$h_t = tanh(Wx_t + Uh_{t-1} + b) (2)$$

$$y_t = softmax(W_o h_t + b_o) (3)$$

4 / 16

Long-short term memory (LSTM)

- Vanishing gradient
 - ▶ In RNNs, the gradient gets very small as it propagates backward
 - ▶ Idea: allow shortcuts towards far past
- Gating mechanism

$$g = f(x_t, h_t) \in [0, 1]$$
$$x_{\text{gated}} = g \odot x_t$$

ullet LSTMs have two hidden states: h and c

LSTM Math

LSTM

$$\begin{aligned} i_t = &\sigma(W_i x_t + U_i h_t + b_i) & \text{input} \\ f_t = &\sigma(W_f x_t + U_f h_t + b_f) & \text{forget} \\ o_t = &\sigma(W_o x_t + U_o h_t + b_o) & \text{output} \\ c'_t = & \tanh(W_c x_t + U_c h_t + b_c) & \text{cell state} \\ c_{t+1} = &f_t \odot c_t + i_t \odot c'_t \\ h_{t+1} = &o_t \odot \tanh(c_{t+1}) \\ \text{LSTM}(x_t, h_t, c_t) = &h_{t+1} \end{aligned}$$

- LSTMs output their hidden state like simple RNNs
 - Need to add a dense layer to predict labels

LSTM: how can it memorize things?

Let's have a closer look at the gated output

$$\begin{aligned} \operatorname{cell}_{t+1} &= \operatorname{forget}_t \odot \operatorname{cell}_t + \operatorname{input}_t \odot \operatorname{cell}_t' \\ \operatorname{hidden}_{t+1} &= \operatorname{output}_t \odot \operatorname{tanh}(\operatorname{cell}_{t+1}) \end{aligned}$$

- Interpretation
 - if $forget_t = 1$ and $input_t = 0$: previous cell state is used
 - if $forget_t = 0$ and $input_t = 1$: previous cell state is ignored
 - ▶ if output_t = 1: output is set to cell state
 - if $\operatorname{output}_t = 0$: output is set to 0

Stacked RNNs

- Increasing hidden state size is very expensive
 - U is of size $(hidden \times hidden)$
 - Can feed the output of a RNN to another RNN cell
 - ▶ → Multi-resolution analysis, better generalization

- Highway connections create shortcuts between layers
 - $ightharpoonup gate_l = \sigma(W_q h_{l-1})$
 - $h_l = LSTM(h_{l-1}) \circ gate_l + h_{l-1} \circ (1 gate_l)$

Bidirectional networks

- RNN make predictions independent of the future observations
 - Need to look into the future
- Idea: concatenate the output of a forward and backward RNN
 - ► The decision can benefit from both past and future observations
 - Only applicable if we can wait for the future to happen

• Not strictly necessary (Time-Delay Neural Networks)

9 / 16

Multi-task learning

- Can we build better representations by training the NN to predict different things?
 - ▶ Share the weights of lower system, diverge after representation layer
 - Also applies to feed forward neural networks
- Example: semantic tagging from words
 - Train system to predict low-level and high-level syntactic labels, as well as semantic labels
 - Need training data for each task
 - At test time only keep output of interest

Conditional Random Fields

- Conditional random fields as a loss function
 - Generate emissions with NN
 - Generate transitions with NN
 - Backpropagate CRF loss through NNs

[Artieres et al, 2010; Huang et al, 2015...]

Encoder-decoder framework

- Generalisation of the conditioned language model
 - Build a representation, then generate sentence
 - Also called the seq2seq framework

- Basis of neural machine translation (NMT)
 - ► Les carottes étaient cuites → It was game over
 - Output can be synchroneous
- Can model non-sequential phenomena
 - "Grammar As a Foreign Language" [Vynials et al, 2014]

Attention mechanisms

- Loosely based on human visual attention mechanism
 - Let neural network focus on aspects of the input to make its decision
 - Learn what to attend based on what it has produced so far
 - ▶ More of a mechanism for memorizing the input

$$enc_j = \text{encoder hidden state}$$
 $dec_t = \text{decoder hidden state}$
 $u_t^j = v^T tanh(W_e enc_j + W_d dec_t)$
 $\forall j \in [1..n]$
 $\alpha_t = softmax(u_t)$
 $s_t = dec_t + \sum_j \alpha_t^j enc_j$
 $y_t = softmax(W_o s_t + b_o)$

- Structured attention networks [Kim et al, 2017]
 - ► Latent variables over the input (segments, trees...)

Pointer networks

- Decision is an offset in the input
 - Number of classes dependent on the length of the input
 - Decision depends on hidden state in input and hidden state in output
 - ► Can learn simple algorithms, such as finding the convex hull of a set of points

• Multilingual Language Processing From Bytes [Gillick et al, 2015]

Do we really need RNNs

- "Attention is all you need" [Vaswani et al, 2017]
 - Multiple layers of attention
- Position encoding
 - For position i, dimension j (total d, k = 10000)

$$pe_{i,2j} = sin(\frac{i}{k^{\frac{2j}{d}}})$$
$$pe_{i,2j+1} = cos(\frac{i}{k^{\frac{2j}{d}}})$$

Figure 1: The Transformer - model architecture.

Explore other structures?

- WaveNet architecture
 - Extract long-term relations

Account for parse tree

 Generate annotations of the tree node

Figure 1: **Top:** A chain-structured LSTM network. **Bottom:** A tree-structured LSTM network with arbitrary branching factor.